

Manifold Sampling for Nonconvex Optimization of Piecewise Linear Compositions

Kamil Khan, Jeffrey Larson, Matt Menickelly, Stefan Wild

Argonne National Laboratory

July 4, 2018

We are interested in solving the problem:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \triangleq \psi(x) + h(F(x))$$

where $\psi: \mathbb{R}^n \to \mathbb{R}$, $F: \mathbb{R}^n \to \mathbb{R}^p$, $h: \mathbb{R}^p \to \mathbb{R}$,

We are interested in solving the problem:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \triangleq \psi(x) + h(F(x))$$

where
$$\psi: \mathbb{R}^n \to \mathbb{R}$$
, $F: \mathbb{R}^n \to \mathbb{R}^p$, $h: \mathbb{R}^p \to \mathbb{R}$, and

 $ightharpoonup \psi$ is smooth with known derivatives

We are interested in solving the problem:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \triangleq \psi(x) + h(F(x))$$

where
$$\psi: \mathbb{R}^n \to \mathbb{R}$$
, $F: \mathbb{R}^n \to \mathbb{R}^p$, $h: \mathbb{R}^p \to \mathbb{R}$, and

- $ightharpoonup \psi$ is smooth with known derivatives
- ▶ h is nonsmooth, piecewise linear, and has a known structure (cheap to evaluate)

We are interested in solving the problem:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \triangleq \psi(x) + h(F(x))$$

where
$$\psi: \mathbb{R}^n \to \mathbb{R}$$
, $F: \mathbb{R}^n \to \mathbb{R}^p$, $h: \mathbb{R}^p \to \mathbb{R}$, and

- $\blacktriangleright \psi$ is smooth with known derivatives
- h is nonsmooth, piecewise linear, and has a known structure (cheap to evaluate)
- ► F is smooth, nonlinear, and has a relatively unknown structure (expensive to evaluate)

We are interested in solving the problem:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \triangleq \psi(x) + h(F(x))$$

where
$$\psi: \mathbb{R}^n \to \mathbb{R}$$
, $F: \mathbb{R}^n \to \mathbb{R}^p$, $h: \mathbb{R}^p \to \mathbb{R}$, and

- $\blacktriangleright \psi$ is smooth with known derivatives
- h is nonsmooth, piecewise linear, and has a known structure (cheap to evaluate)
- ► F is smooth, nonlinear, and has a relatively unknown structure (expensive to evaluate)

Piecewise linear h does not imply $h \circ F$ is piecewise linear.

Formulation

$$h(F(x)) = \max \{ \sin(2x) + 1, \cos(2x), x \} - \min \{ \sin(2x) + 1, \cos(2x), x \}$$

Notes

▶ The *manifold sampling* framework does not require the availability of the Jacobian ∇F .

Notes

▶ The *manifold sampling* framework does not require the availability of the Jacobian ∇F .

▶ Applicable both when inexact values for $\nabla F(x)$ are available and in the derivative-free case, when only F(x) is available.

Notes

► The manifold sampling framework does not require the availability of the Jacobian ∇F.

▶ Applicable both when inexact values for $\nabla F(x)$ are available and in the derivative-free case, when only F(x) is available.

▶ We will build component models m^{F_i} of each F_i around points x. We can then use $\nabla M(x) \in \mathbb{R}^{n \times p}$ where

$$\nabla M(x) \triangleq \left[\nabla m^{F_1}(x), \ldots, \nabla m^{F_p}(x)\right].$$

Piecewise linear functions

Definition

A function $h\colon \mathbb{R}^p \to \mathbb{R}$ is piecewise linear if h is continuous and there exists a finite collection $\mathfrak{H} \triangleq \{h_i : i=1,\ldots,\hat{m}\}$ of affine functions that map \mathbb{R}^p into \mathbb{R} , for which

$$h(z) \in \{\tilde{h}(z) : \tilde{h} \in \mathfrak{H}\}, \quad \forall z \in \mathbb{R}^p.$$

- h is a continuous selection of \mathfrak{H} .
- ▶ Elements of \mathfrak{H} are selection functions of h.
- ▶ $h_i: z \in \mathbb{R}^p \mapsto \langle a_i, z \rangle + b_i$ for each i.

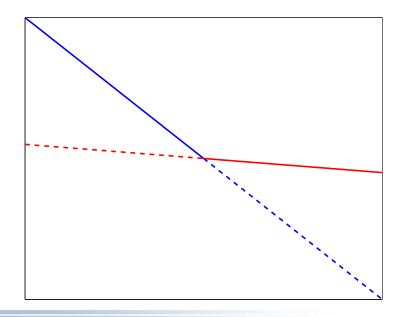
Piecewise linear functions

Definition

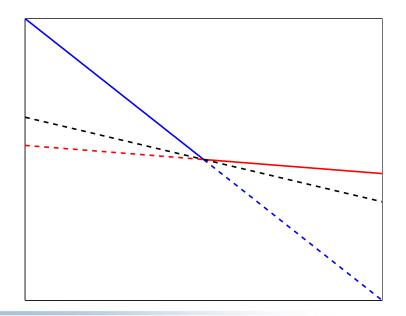
A function $h \colon \mathbb{R}^p \to \mathbb{R}$ is piecewise linear if h is continuous and there exists a finite collection $\mathfrak{H} \triangleq \{h_i : i = 1, \dots, \hat{m}\}$ of affine functions that map \mathbb{R}^p into \mathbb{R} , for which

$$h(z) \in \{\tilde{h}(z) : \tilde{h} \in \mathfrak{H}\}, \quad \forall z \in \mathbb{R}^p.$$

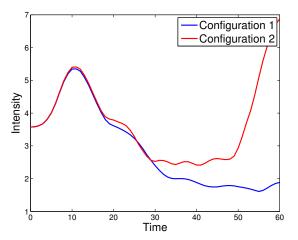
- \blacktriangleright h is a continuous selection of \mathfrak{H} .
- ▶ Elements of \mathfrak{H} are selection functions of h.
- ▶ $h_i: z \in \mathbb{R}^p \mapsto \langle a_i, z \rangle + b_i$ for each i.


Definition

$$\mathcal{S}_{i} \triangleq \left\{ y : h(y) = h_{i}(y) \right\}, \quad \tilde{\mathcal{S}}_{i} \triangleq \mathbf{cl}\left(\mathbf{int}\left(\mathcal{S}_{i}\right)\right), \quad I_{h}(z) \triangleq \left\{ i : z \in \tilde{\mathcal{S}}_{i} \right\},$$


 h_i for $i \in I_h(z)$ is an essentially active selection function for h at z.

Essentially active



Essentially active

Laser pulse propagating in a plasma channel

Determine plasma channel properties that minimize the maximum difference in the laser intensity.

$$f(x) = \max_{\Omega_1} \{F_i(x)\} - \min_{\Omega_2} \{F_i(x)\}$$

A generalized derivative

Definition

The B-subdifferential of f at x is defined as

$$\partial_{\mathrm{B}}f(x) \triangleq \left\{ \xi : \xi = \lim_{y^j \to x} \nabla f(y^j) : \ y^j \in \mathcal{D} \right\}.$$

The generalized Clarke subdifferential of f at x is defined as

$$\partial_{\mathbf{C}} f(\mathbf{x}) \triangleq \mathbf{co} (\partial_{\mathbf{B}}).$$

A generalized derivative

Definition

The B-subdifferential of f at x is defined as

$$\partial_{\mathrm{B}}f(x) \triangleq \left\{ \xi : \xi = \lim_{y^j \to x} \nabla f(y^j) : \ y^j \in \mathcal{D} \right\}.$$

The generalized Clarke subdifferential of f at x is defined as

$$\partial_{\mathbf{C}} f(\mathbf{x}) \triangleq \mathbf{co} (\partial_{\mathbf{B}})$$
.

For our case:

$$\partial_{\mathbf{C}} h(z) = \mathbf{co} (\{a_i : i \in I_h(z)\})$$

A generalized derivative

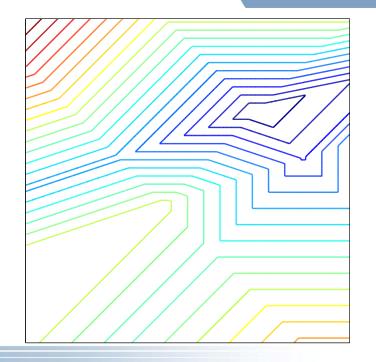
Definition

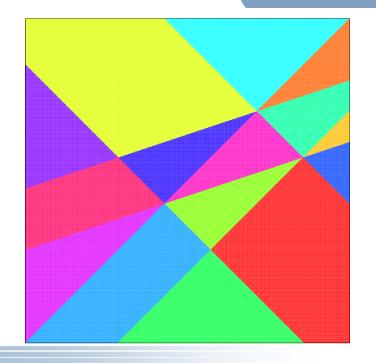
The B-subdifferential of f at x is defined as

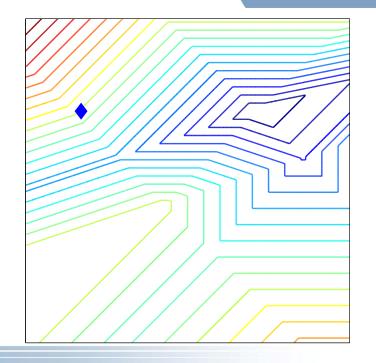
$$\partial_{\mathrm{B}}f(x) \triangleq \left\{ \xi : \xi = \lim_{y^j \to x} \nabla f(y^j) : \ y^j \in \mathcal{D} \right\}.$$

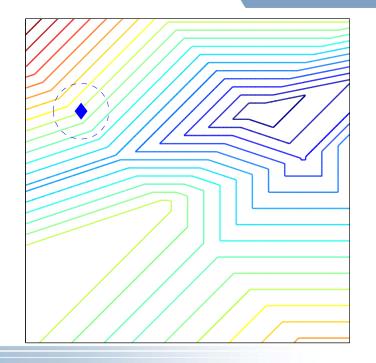
The generalized Clarke subdifferential of f at x is defined as

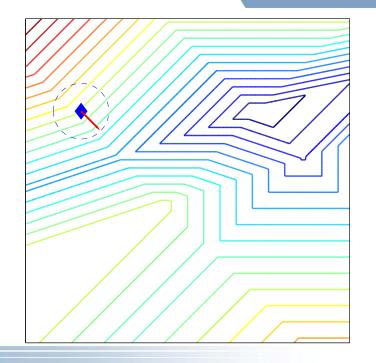
$$\partial_{\mathbf{C}} f(\mathbf{x}) \triangleq \mathbf{co} (\partial_{\mathbf{B}}).$$

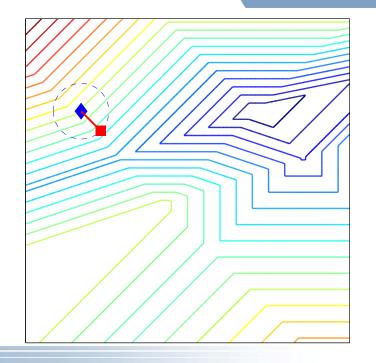

For our case:

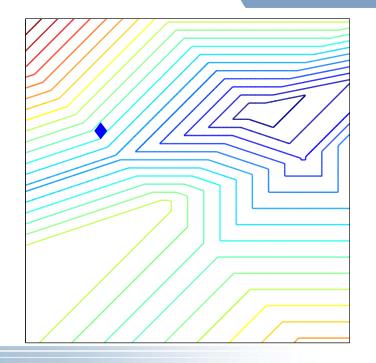

$$\partial_{\mathbf{C}} h(z) = \mathbf{co} (\{a_i : i \in I_h(z)\})$$

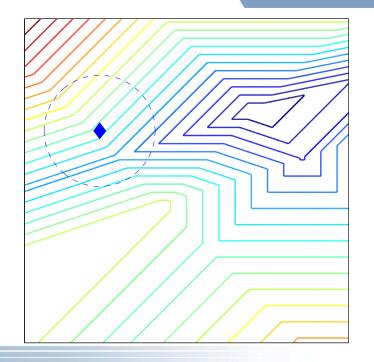

Definition

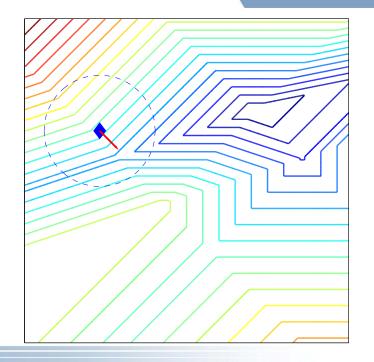

A point x is called a *Clarke stationary* point of f if $0 \in \partial_{\mathbf{C}} f(x)$.

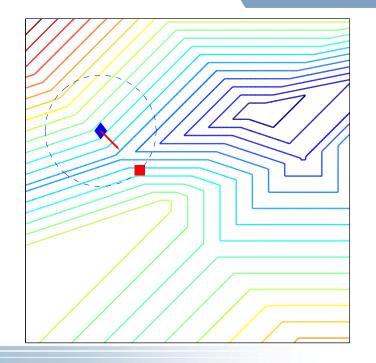


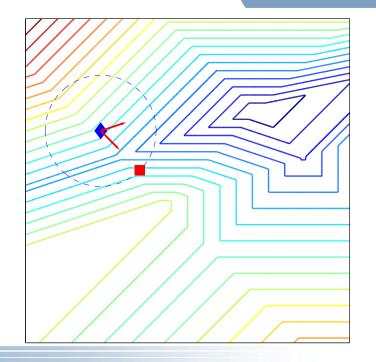


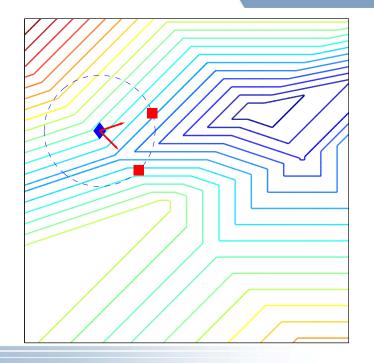












▶ Generator set \mathfrak{G}^k

▶ Generator set \mathfrak{G}^k

► Smooth master model m_k^f

▶ Generator set 𝔥^k

▶ Smooth master model m_k^f

► Trust-region subproblem solution *s*^k

▶ Generator set \mathfrak{G}^k

▶ Smooth master model m_k^f

► Trust-region subproblem solution *s*^k

▶ Measuring descent with ρ_k

Generator set

At some iterate x^k ,

$$\mathfrak{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\}$$

where $I_h(F(x^k))$ is the set of essentially active indices of h at $F(x^k)$.

At some iterate x^k ,

$$\mathfrak{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\} \to \mathsf{MS4PL-1}$$

where $I_h(F(x^k))$ is the set of essentially active indices of h at $F(x^k)$.

At some iterate x^k ,

$$\mathfrak{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\} \to \mathsf{MS4PL-1}$$

where $I_h(F(x^k))$ is the set of essentially active indices of h at $F(x^k)$.

Or, given a set of points $Y = \left\{ x^k, y^2, \dots, y^p \right\} \subset \mathcal{B}(x^k, \Delta_k)$,

$$\mathfrak{G}^k \triangleq \bigcup_{y \in Y} \bigcup_{i \in I_h(F(y))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\}$$

At some iterate x^k ,

$$\mathfrak{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\} \to \mathsf{MS4PL-1}$$

where $I_h(F(x^k))$ is the set of essentially active indices of h at $F(x^k)$.

Or, given a set of points
$$Y = \left\{ x^k, y^2, \dots, y^p \right\} \subset \mathcal{B}(x^k, \Delta_k)$$
 ,

$$\mathfrak{G}^k \triangleq \bigcup_{y \in Y} \bigcup_{i \in I_h(F(y))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\} \to \mathsf{MS4PL-2}$$

At some iterate x^k ,

$$\mathfrak{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\} \to \mathsf{MS4PL-1}$$

where $I_h(F(x^k))$ is the set of essentially active indices of h at $F(x^k)$.

Or, given a set of points
$$Y = \left\{ x^k, y^2, \dots, y^p \right\} \subset \mathcal{B}(x^k, \Delta_k)$$
 ,

$$\mathfrak{G}^k \triangleq \bigcup_{y \in Y} \bigcup_{i \in I_h(F(y))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\} \to \mathsf{MS4PL-2}$$

Assumption

The set \mathfrak{G}^k satisfies MS4PL-1 $\subseteq \mathfrak{G}^k \subseteq MS4PL-2$.

Smooth master model

Our model gradients around iterate x^k satisfy

$$g^{k} riangleq extsf{proj}\left(0, extsf{co}\left(\mathfrak{G}^{k}
ight)
ight) \in extsf{co}\left(\mathfrak{G}^{k}
ight)$$
 ,

Let λ^* be the corresponding coefficients so that $g^k = G^k \lambda^*$.

Smooth master model

Our model gradients around iterate x^k satisfy

$$g^{k} riangleq extsf{proj}\left(0, extsf{co}\left(\mathfrak{G}^{k}
ight)
ight) \in extsf{co}\left(\mathfrak{G}^{k}
ight)$$
 ,

Let λ^* be the corresponding coefficients so that $g^k = G^k \lambda^*$.

Define

$$A^k \triangleq \left[egin{array}{ccc} | & | & | \\ a_{j_1} & \cdots & a_{j_t} \\ | & & | \end{array}
ight],$$

and set $w^k = A^k \lambda^*$. Define the smooth master model $m_k^f : \mathbb{R}^n \to \mathbb{R}$,

$$m_k^f(x) \triangleq \psi(x) + \sum_{i=1}^p w_i^k m^{F_i}(x) + \sum_{i=1}^p \lambda_i^* b_{j_i}.$$

Trust region subproblem

Approximately solve

minimize
$$m_k^f(x^k + s)$$

subject to: $s \in \mathcal{B}(0, \Delta_k)$

to obtain a solution s satisfying

$$\psi(x^k) - \psi(x^k + s) + \left\langle M(x^k) - M(x^k + s), w^k \right\rangle \ge \frac{\kappa_d}{2} \|g^k\| \min \left\{ \Delta_k, \frac{\|g^k\|}{\kappa_{\rm mh}} \right\}.$$

ightharpoonup Descent is measured using some selection function $h^{(k)}$ and not h

▶ Descent is measured using some selection function $h^{(k)}$ and not h

▶ Must ensure information about $h^{(k)}$ is in \mathfrak{G}^k before taking a step

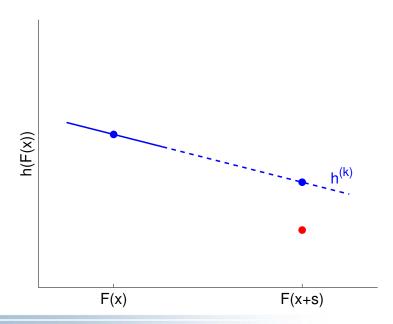
15 of 1

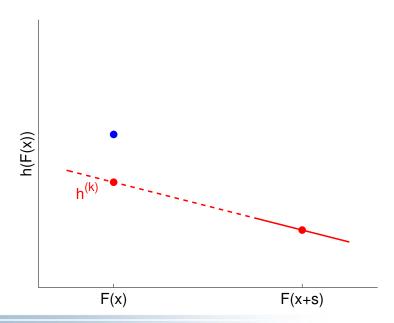
ightharpoonup Descent is measured using some selection function $h^{(k)}$ and not h

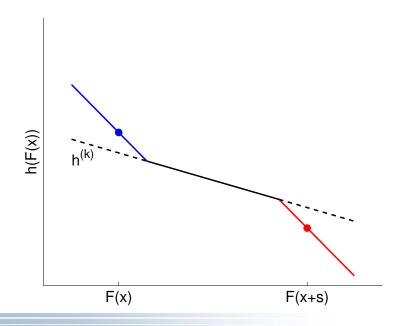
▶ Must ensure information about $h^{(k)}$ is in \mathfrak{G}^k before taking a step

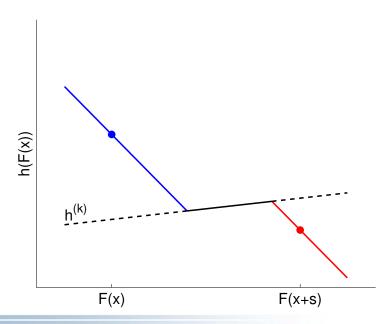
► *h*^(k) must satisfy

$$h^{(k)}(F(x^k)) \le h(F(x^k))$$
 and $h^{(k)}(F(x^k + s^k)) \ge h(F(x^k + s^k))$,


▶ Descent is measured using some selection function $h^{(k)}$ and not h


▶ Must ensure information about $h^{(k)}$ is in \mathfrak{G}^k before taking a step


▶ h^(k) must satisfy


$$h^{(k)}(F(x^k)) \le h(F(x^k))$$
 and $h^{(k)}(F(x^k + s^k)) \ge h(F(x^k + s^k))$,

$$\rho_{k} \triangleq \frac{\psi(x^{k}) - \psi(x^{k} + s^{k}) + h^{(k)}(F(x^{k})) - h^{(k)}(F(x^{k} + s^{k}))}{\psi(x^{k}) - \psi(x^{k} + s^{k}) + \langle M(x^{k}) - M(x^{k} + s^{k}), a^{(k)} \rangle}$$

Algorithm components

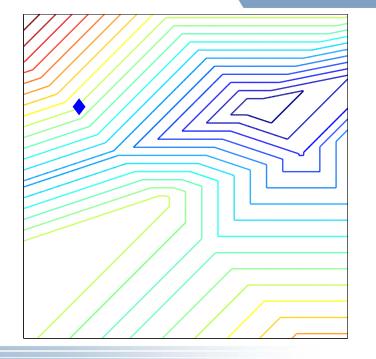
▶ Generator set 𝔥^k

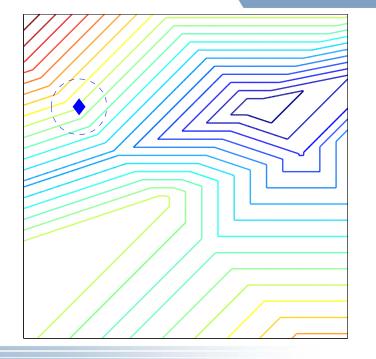
▶ Smooth master model m_k^f

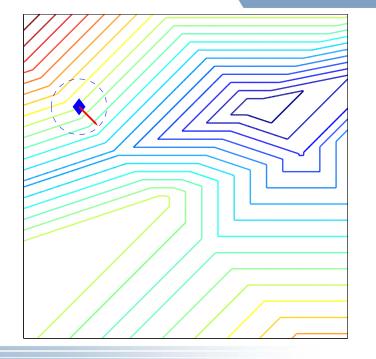
▶ Trust-region subproblem solution s^k

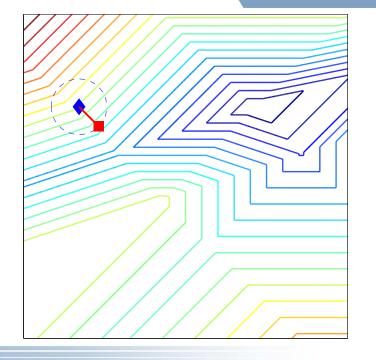
▶ Measuring descent with ρ_k

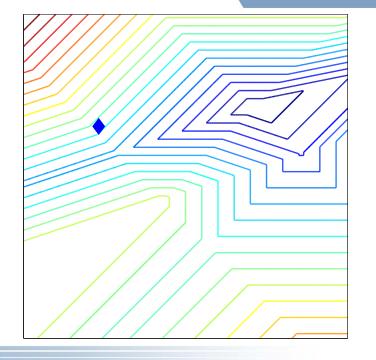
Algorithm MS4PL

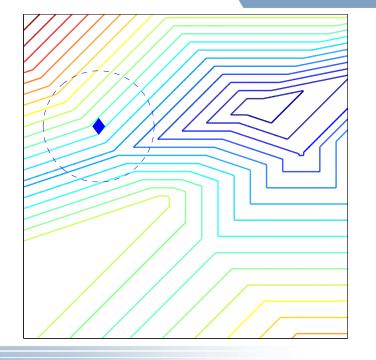

```
Choose x^0 and \Delta_0
for k = 0, 1, 2, ... do
       Build p component models m^{F_i} fully linear on \mathcal{B}(x^k, \Delta_k)
       Form \nabla M(x^k) using \nabla m^{F_i}(x^k) and construct \mathfrak{G}^k \subset \mathbb{R}^n
      \rho_k \leftarrow -\infty
      while \rho_k = -\infty do
              if \Delta_k < \eta_2 \|\nabla m^f(x^k)\| then
                     Approximately solve TRSP to obtain s^k
                     Evaluate F(x^k + s^k) and find h^{(k)}
                     if (\nabla \psi(x^k) + \nabla M(x^k) a^{(k)}) \in \mathfrak{G}^k then
                           Calculate Ov
                     else
                           \mathfrak{G}^k \leftarrow \mathfrak{G}^k \cup \{\nabla \psi(x^k) + \nabla M(x^k) \, a^{(k)}\}\
                           Update component models m^{F_i} and master model m^f
              else
                     break
      if \rho_k > \eta_1 > 0 then
            x^{k+1} \leftarrow x^k + s^k, \Delta_{k+1} \leftarrow \min\{\gamma_{\text{inc}}\Delta_k, \Delta_{\text{max}}\}
      else
             x^{k+1} \leftarrow x^k, \Delta_{k+1} \leftarrow \gamma_{\text{dec}} \Delta_k
```

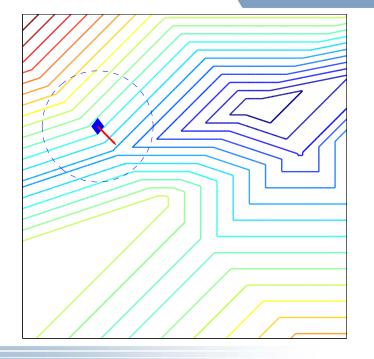

At some iterate x^k ,

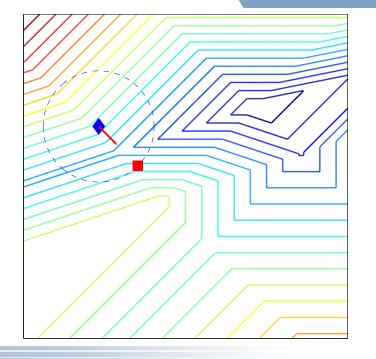

$$\mathfrak{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\} \to \mathsf{MS4PL-1}$$

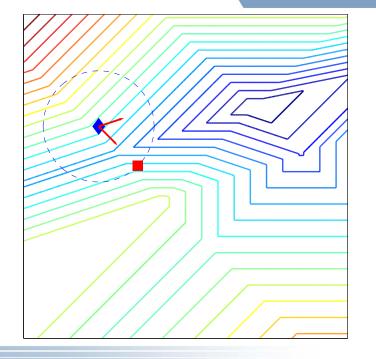

where $I_h(F(x^k))$ is the set of essentially active indices of h at $F(x^k)$.

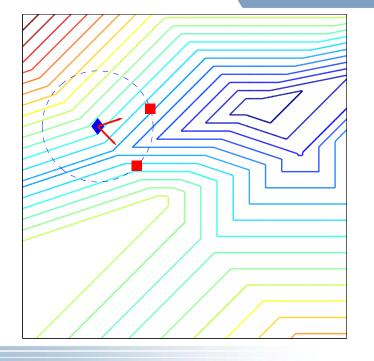


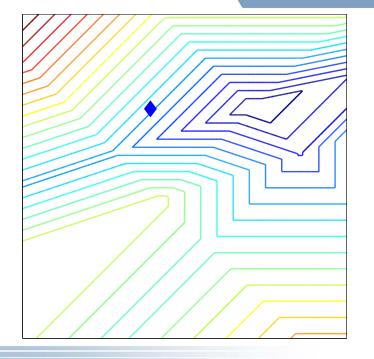


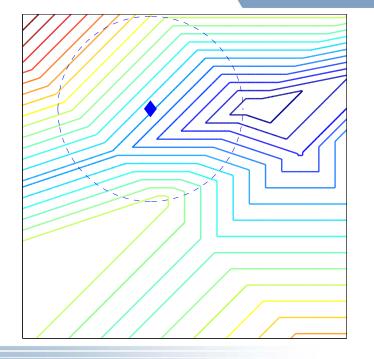


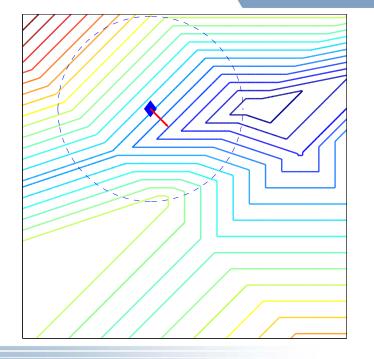


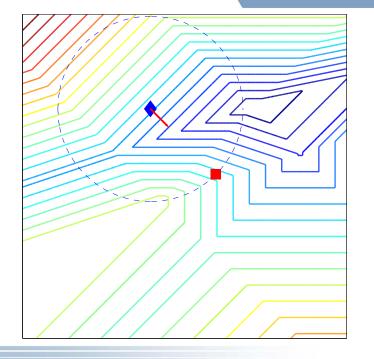


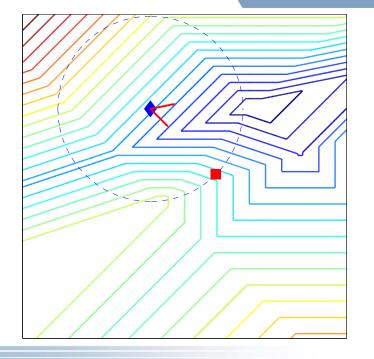


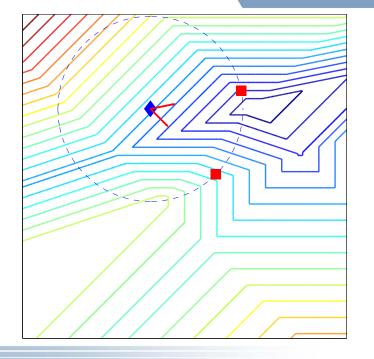


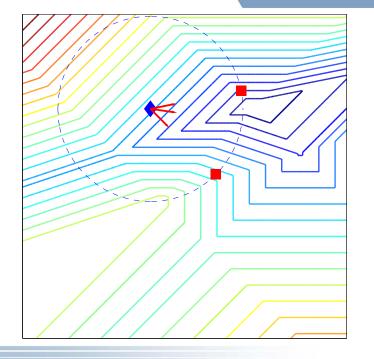


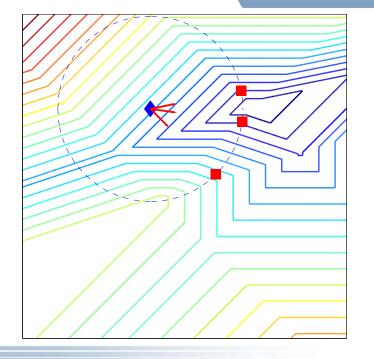


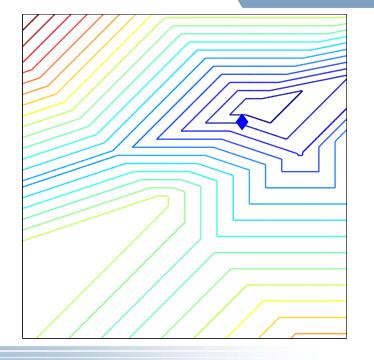


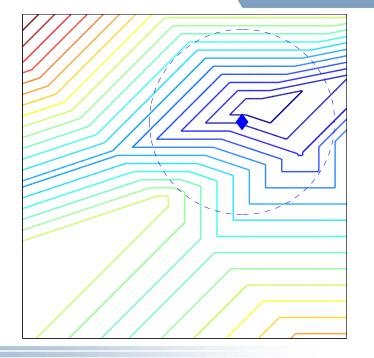


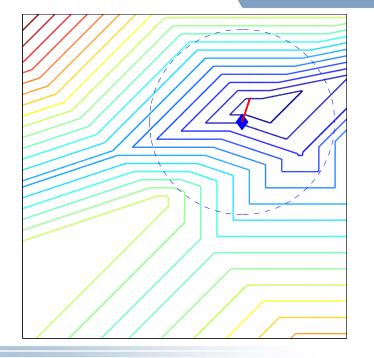


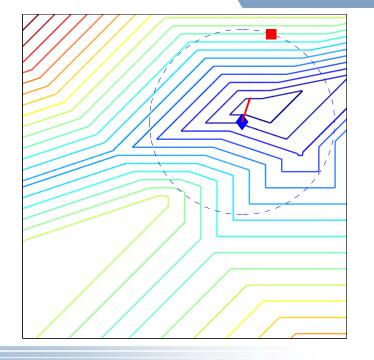


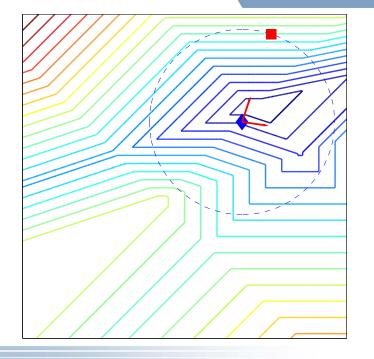


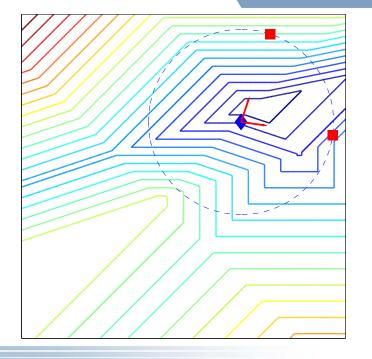


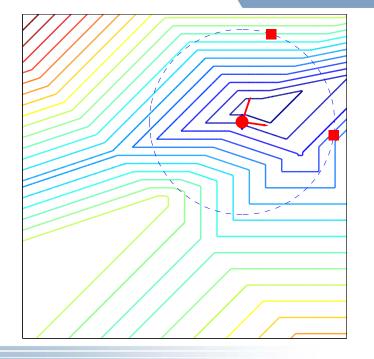


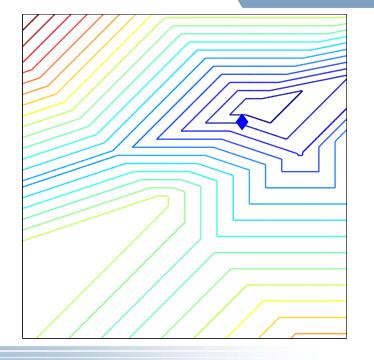


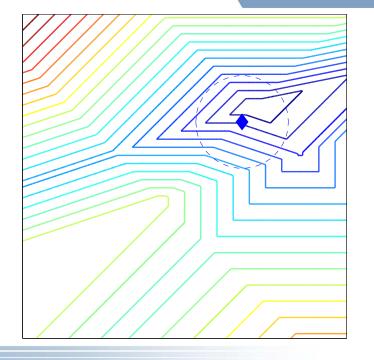


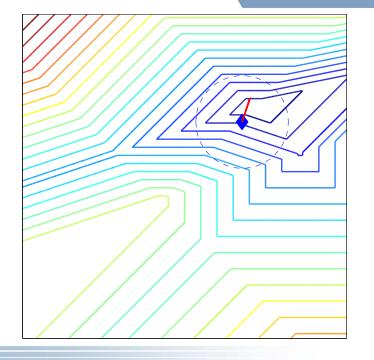


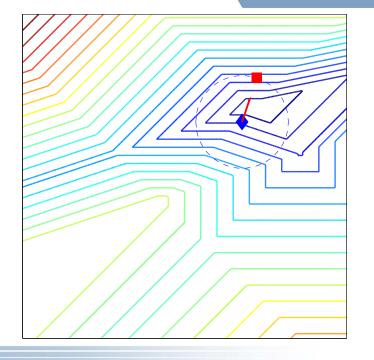


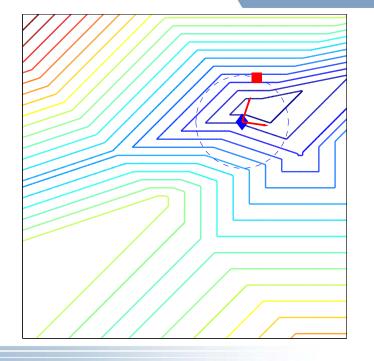


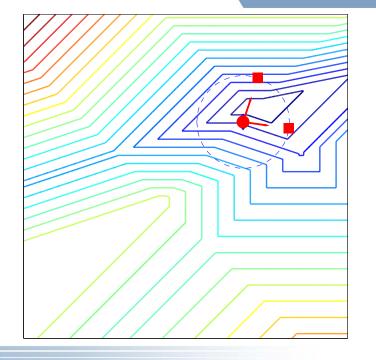


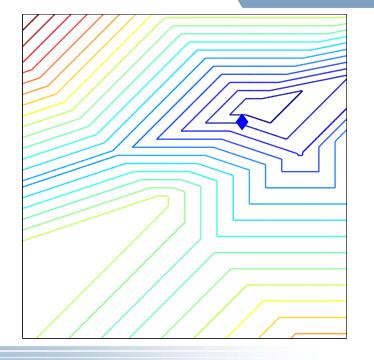


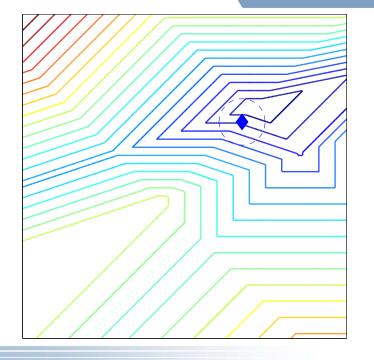


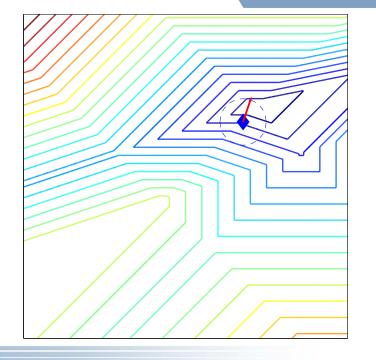


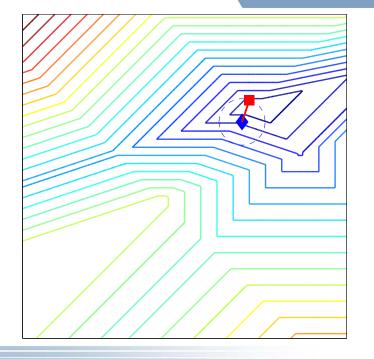


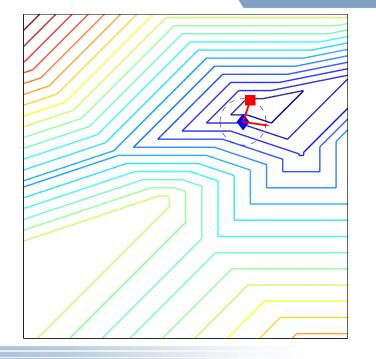


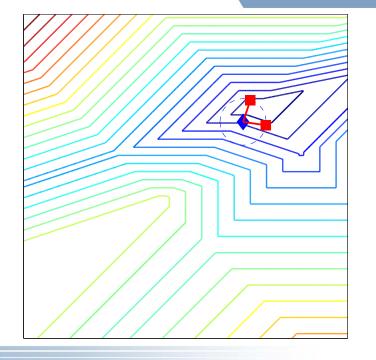


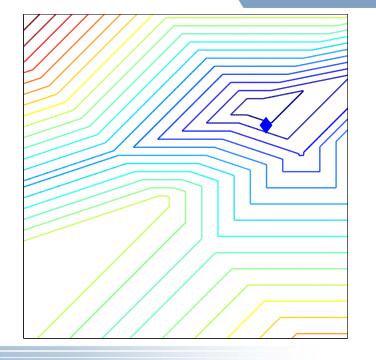






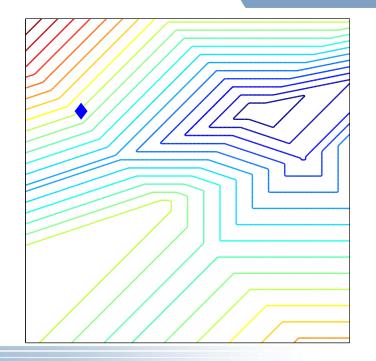


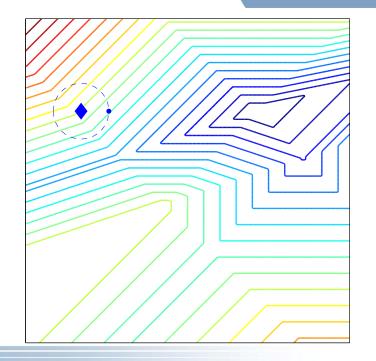


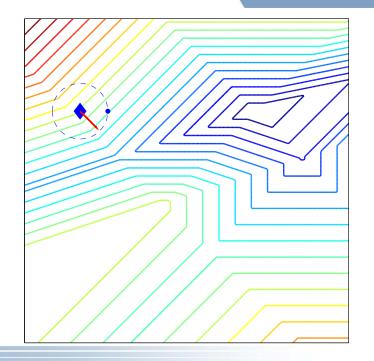


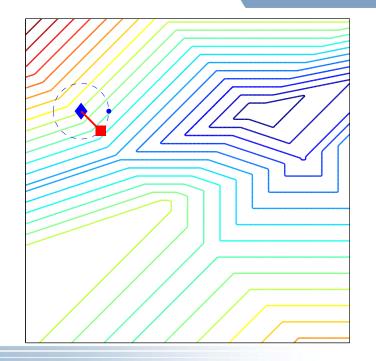
Generator set

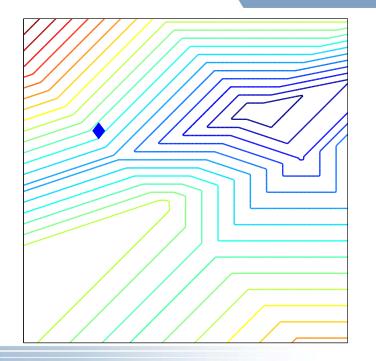
At some iterate x^k ,

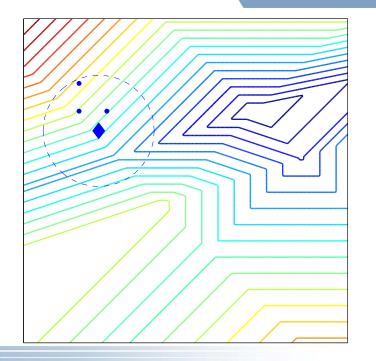

$$\mathfrak{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\} \to \mathsf{MS4PL-1}$$

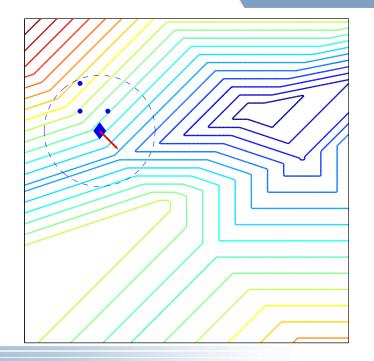

where $I_h(F(x^k))$ is the set of essentially active indices of h at $F(x^k)$.

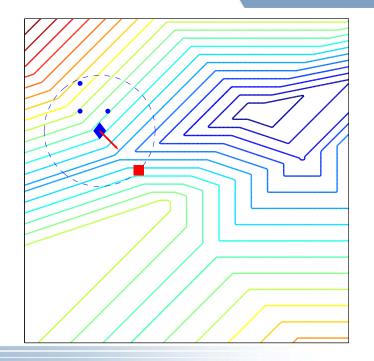

Or, given a set of points
$$Y = \left\{x^k, y^2, \dots, y^p\right\} \subset \mathcal{B}(x^k, \Delta_k)$$
 ,

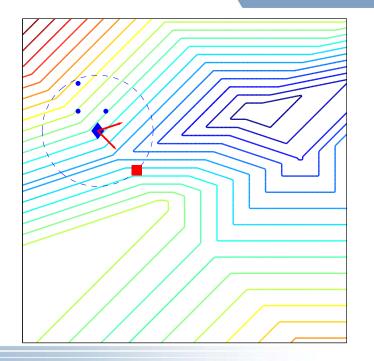

$$\mathfrak{G}^k \triangleq \bigcup_{y \in Y} \bigcup_{i \in I_h(F(y))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\} \to \mathsf{MS4PL-2}$$

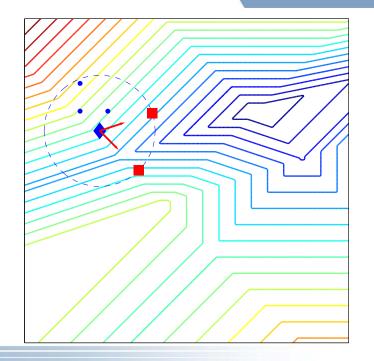


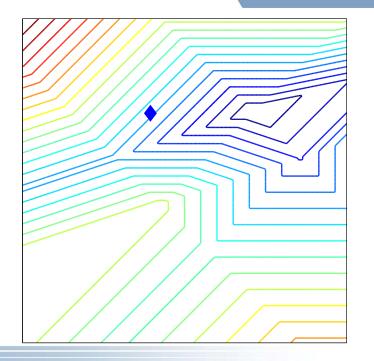


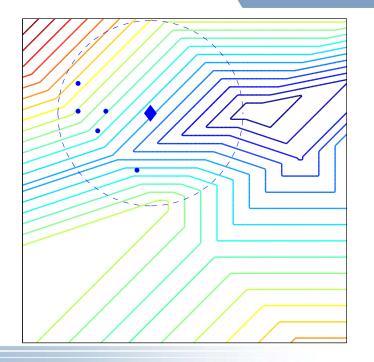


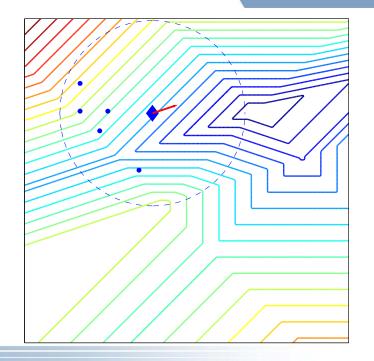


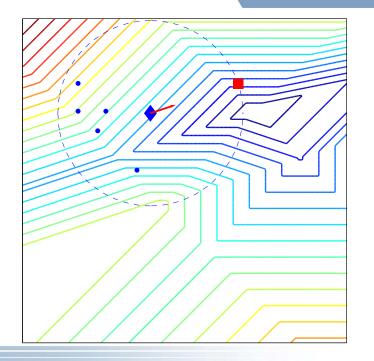


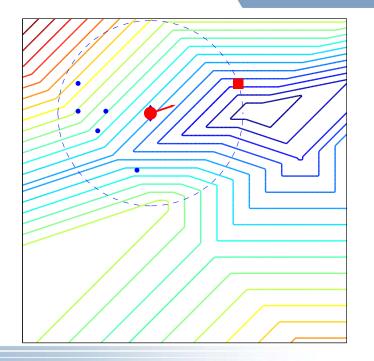


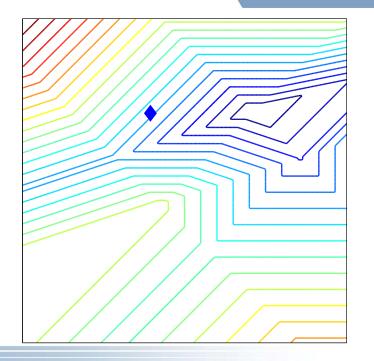


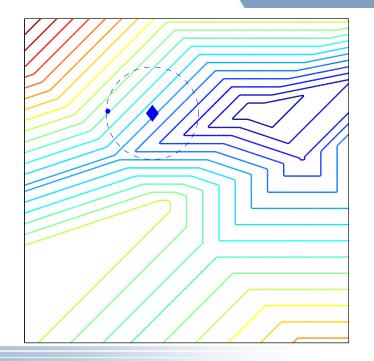


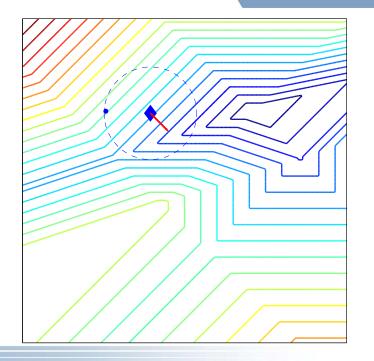


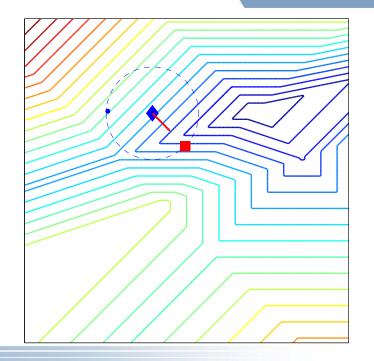


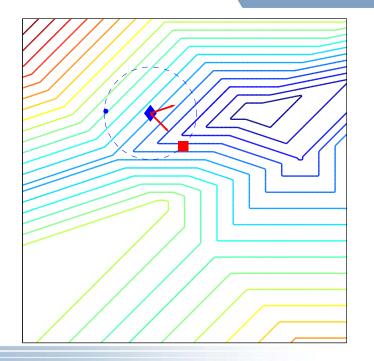


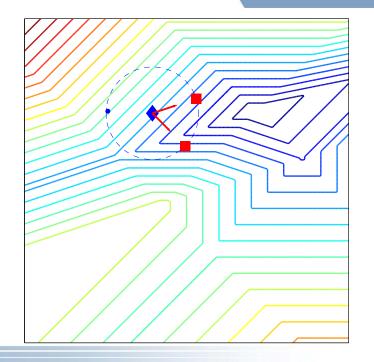


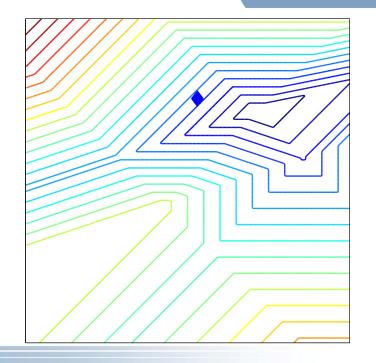


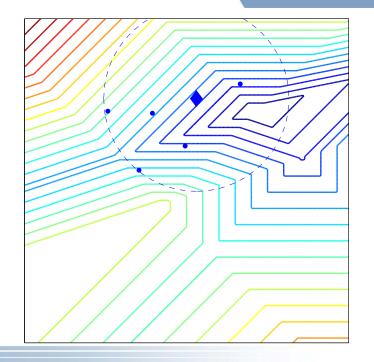


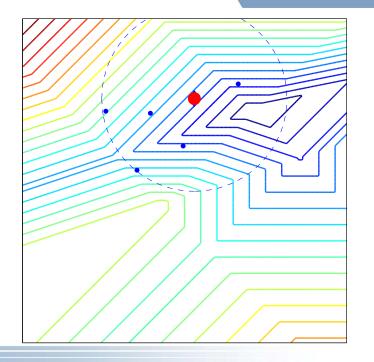


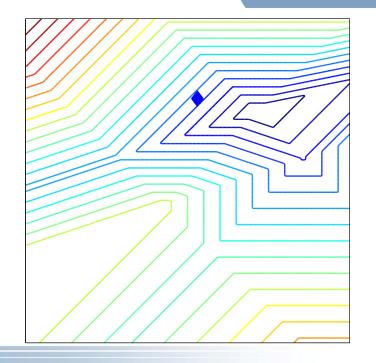


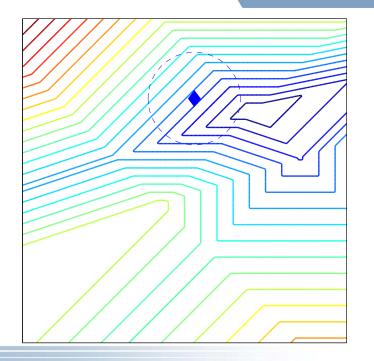


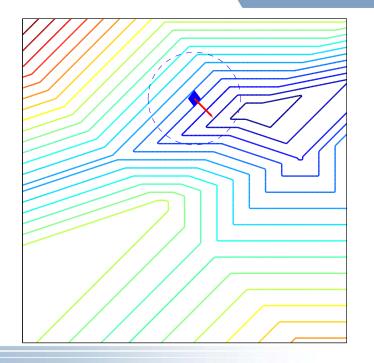


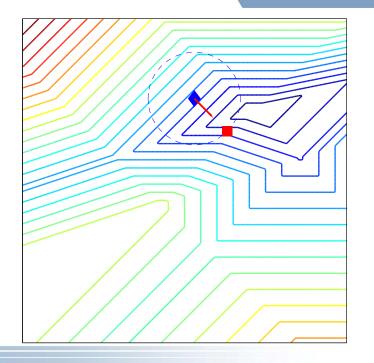


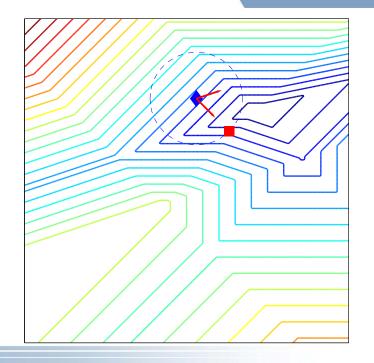


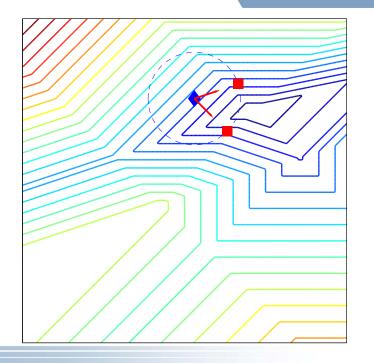


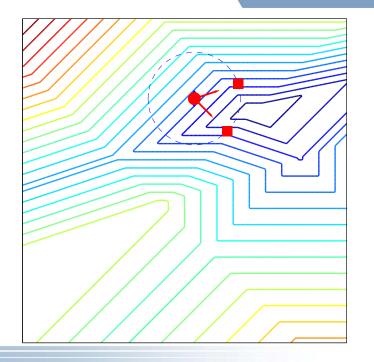












Convergence

▶ If the trust region radius Δ_k is a sufficiently small multiple of the master model gradient $\|g^k\|$, the iteration is guaranteed to be successful.

 $ightharpoonup \lim_{k\to\infty} \Delta_k = 0.$

▶ Some subsequence of master model gradients g^k goes zero.

➤ Zero is in the generalized Clarke subdifferential of cluster points of any subsequence of iterates with master model gradients converging to zero.

▶ The same holds for cluster points of the sequence of MS4PL iterates.

Test problems

Let h be a censored ℓ_1 -loss function. Given data $d \in \mathbb{R}^p$, censors $c \in \mathbb{R}^p$, and the mapping $F : \mathbb{R}^n \to \mathbb{R}^p$, we define

$$f(x) = \sum_{i=1}^{p} |d_i - \max\{F_i(x), c_i\}|.$$

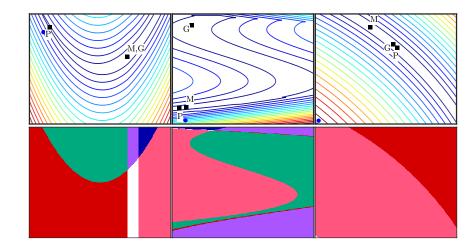
That is, $\psi = 0$, and

$$h(y) = \sum_{i=1}^{p} |d_i - \max\{y_i, c_i\}|.$$

Test problems

Let h be a censored ℓ_1 -loss function. Given data $d \in \mathbb{R}^p$, censors $c \in \mathbb{R}^p$, and the mapping $F : \mathbb{R}^n \to \mathbb{R}^p$, we define

$$f(x) = \sum_{i=1}^{p} |d_i - \max\{F_i(x), c_i\}|.$$


That is, $\psi = 0$, and

$$h(y) = \sum_{i=1}^{p} |d_i - \max\{y_i, c_i\}|.$$

Define F to be the 53 vector mapping in the Móre and Wild benchmarking set. $2 \le n \le 12$, $2 \le p \le 45$.

Examples

MS4PL-1 Using manifolds at x^k [F, knowledge of h]

MS4PL-2 Using manifolds in $\mathcal{B}(x^k, \Delta_k)$ [F, knowledge of h]

MS4PL-1 Using manifolds at x^k [F, knowledge of h]

MS4PL-2 Using manifolds in $\mathcal{B}(x^k, \Delta_k)$ [F, knowledge of h]

PLC POUNDERs using a single manifold active at x^k to form a master model [F, single element of $\partial_B h$]

MS4PL-1 Using manifolds at x^k [F, knowledge of h]

MS4PL-2 Using manifolds in $\mathcal{B}(x^k, \Delta_k)$ [F, knowledge of h]

PLC POUNDERs using a single manifold active at x^k to form a master model [F, single element of $\partial_B h$]

SLQP-GS Gradient sampling algorithm [Curtis] [f, $\partial_B f$ (via ∇F)]

GRANSO BFGS-SQP [Mitchell, Curtis, Overton.] [f, $\partial_B f$ (via ∇F)]

MS4PL-1 Using manifolds at x^k [F, knowledge of h]

MS4PL-2 Using manifolds in $\mathcal{B}(x^k, \Delta_k)$ [F, knowledge of h]

PLC POUNDERs using a single manifold active at x^k to form a master model [F, single element of $\partial_B h$]

SLQP-GS Gradient sampling algorithm [Curtis] [f, $\partial_B f$ (via ∇F)]

GRANSO BFGS-SQP [Mitchell, Curtis, Overton.] [f, $\partial_B f$ (via ∇F)]

MS4PL-1-grad Using manifolds at x^k [F, knowledge of h, ∇F for models]

f test A method s solves a problem p to a level τ after j function evaluations if

$$f(x^0) - f(x^j) \ge (1 - \tau)(f(x^0) - \tilde{f}_p)$$

 \mathbf{x}^0 is the problem's starting point, and \tilde{f}_p is the best-found function value.

f test A method s solves a problem p to a level τ after j function evaluations if

$$f(x^0) - f(x^j) \ge (1 - \tau)(f(x^0) - \tilde{f}_p)$$

 x^0 is the problem's starting point, and \tilde{f}_p is the best-found function value.

 $\partial_{\mathbf{C}} f$ test Sample gradients.

f test A method s solves a problem p to a level τ after j function evaluations if

$$f(x^0) - f(x^j) \ge (1 - \tau)(f(x^0) - \tilde{f}_p)$$

 x^0 is the problem's starting point, and \tilde{f}_p is the best-found function value.

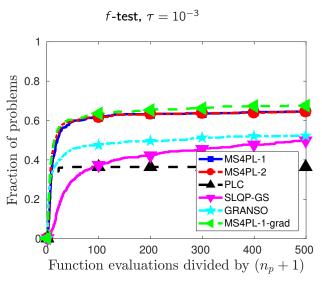
 $\partial_{\mathbf{C}} f$ test Sample gradients.

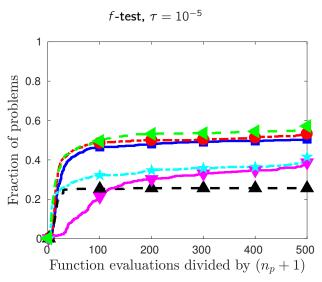
Draw 30 points uniformly from $B(x^j, 10^{-8})$ for each point x^j evaluated by each method.

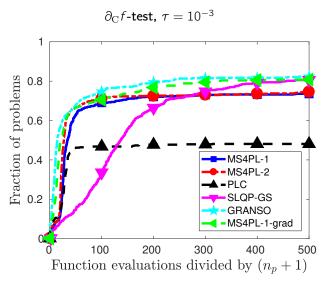
f test A method s solves a problem p to a level τ after j function evaluations if

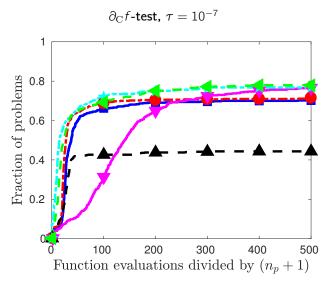
$$f(x^0) - f(x^j) \ge (1 - \tau)(f(x^0) - \tilde{f}_p)$$

 x^0 is the problem's starting point, and \tilde{f}_p is the best-found function value.


 $\partial_{\mathbf{C}} f$ test Sample gradients.


Draw 30 points uniformly from $B(x^j, 10^{-8})$ for each point x^j evaluated by each method.


s solves p to a level τ after j function evaluations if


$$\left\| ilde{g}^{j}
ight\| \leq au \left\| ilde{g}^{0}
ight\|$$

Conclusions

When optimizing functions of the form h(F(x)) when

- ► h is "easy"
- ► *F* is "hard"

it can be advantageous to model F_i and then combine those models via known information about h.

Conclusions

When optimizing functions of the form h(F(x)) when

- ► h is "easy"
- ► *F* is "hard"

it can be advantageous to model F_i and then combine those models via known information about h.

Email jmlarson@anl.gov for a preprint.

Thank you!